

Exercise 4 (Effect on NOx)

Some products of a combustion process of the octane in chemical equilibrium in volumetric composition are the following:

CO ₂	6.5 %
H ₂ O	9.2 %
CO	4.0 %

a) Obtain the composition of H₂

b) Study the effect of the temperature of combustion products on NOx

c) Obtain the effect of the excess air coefficient on NOx

(excerpted from Introduction to Internal Combustion Engines by Richard Stone)

Combustion Products M Unknown Molar Ratios	ode S Dry-Basis (Orsat Analysis) Wet-Basic Analysis
P _{vapor} (T [*] fuel) Inerts: kPa Liquid 1.85698	% Reset FUEL 1 : C ₈ H ₁₈ n-Octane
PRODUCTS 3 → ✓ Mole ratio % ✓ 6.50000 → CO2 ✓ 6.50000 → WATER ✓ 9.20000 → CO ✓ 4.00000 →	Hydrogen in the products There is hydrogen i Water gas shift reaction (Products Ta) Equilibrium temperature CO + H2O CO2 + H2 Itemperature Kp= 0.461447 Itemperature Molar ratio H2/CO 0.25000 $\frac{2}{2}$ Equilibrium temperature

FLUE G	AS (Combus	tion Products)	✓ On wet basis	On dry basis
	mol/mol fuel	🗆 kg/kg fuel	Mole %	Mass %
CO ₂	4.952381	1.908046	6.5000	10.3302
CO	3.047619	0.747310	4.0000	4.0460
H ₂ O	7.009524	1.105492	9.2000	5.9852
N ₂	54.645429	13.401294	71.7221	72.5551
O ₂	4.545048	1.273251	5.9654	6.8934
SO ₂				
H ₂	1.990476	0.035128	2.6125	0.1902
Ar				
Unburned				
TOTAL	76.1905	18.4705	100.00 %	(100.00) %
Dew Point	t (and P _{sat})	□ 100%) mol/mol fuel
58.27 18.40) ∘C H₂O () kPa	(liquid)) % 🦳	kg/kg fuel
		Excess Air Coefficient		

1.16208

-FLUE G	AS (Combus	tion Products)	On wet basis	On dry basis
	mol/mol fuel	🗌 kg/kg fuel	Mole %	Mass %
CO2	4.952381	1.908046	7.1586	10.9879
CO	3.047619	0.747310	4.4053	4.3035
H ₂ O				
N ₂	54.645429	13.401294	78.9891	77.1742
O ₂	4.545048	1.273251	6.5698	7.3323
SO ₂				
H ₂	1.990476	0.035128	2.8772	0.2023
Ar				
Unburned				
TOTAL	69.1810	17.3650	(100.00) %	100.00 %
<u>Dew Poin</u>	<u>t (</u> and P _{sat})	□ 100%		mol/mol fuel
58.27) ∘C H₂O () kPa	liquid)) % 🦳	kg/kg fuel

Air/Fuel ratio (dry air)
Theoretical Actual
59.52381 69.17143 mol/mol fuel
(15.03393) (17.47063) [kg/kg fuel

Oxygen/Fuel ratio (dry air)
OXYGEN 💌
Theoretical Actual
12.50000 14.52600 T mol/mol fuel
3.50175 4.06931 kg/kg fuel

b) Effect of product temperature

c) Incidence of the excess air coefficient on NOx

To have the excess air coefficient tab active, this must be an input variable, so you have to start the problem again, in this case without knowing the mole fractions of the products. Notice that the problem has the same results as in the previous case.

Calculating: CO₂/CO (mole) = 4.952381/ 3.047619 = 1.625

NOx emissions require both oxygen and high temperatures to form. Higher temperatures will occur with rich mixes, then drop as the mix becomes lean. However, only with lean mixtures will there be significant amounts of free oxygen. Therefore, as the mixture becomes lean from stoichiometric, there is a trade-off between increasing oxygen level and decreasing temperature.